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Abstract

A tuning procedure for symmetric coupled- resonator filters is presented that significantly reduces

development and production tuning time. A method of analysis and application to a 12- resonator combline
filter are described. The analysis method allows direct calculation of the loss slope and delay respunses.

Introduction

One of the most important types of microwave
bandpass filters is the coupled- resonator filter in
a symmetric folded configuration (canonical form)

with an even number of resonators (n). The lowpass
prototype for such a filter, as shown in Figure 1,
exhibits a frequency- symmetric response with n-2
finite- frequency loss poles that can be arbitrarily,

placed in the stopband for selectivity and in the

complex- frequency domain for flat pas sband delay

or linear phase. This flexibility in the res pens e
is possible because of the multiple paths through
the network between the input and output ports.
However a filter with such multiple paths is inher-
ently a high sensitivity network and is much more
difficult to tune than a filter with only a single path.

The total number of adjustable parameters in the

filter of Figure 1, including input / output couplings,

inter- re senator couplings and resonator tuning is
5n/2. Thus for a 12-resonator filter there are 30
possible adjustments. Even on a production unit

which requires a minimum amount of adjustment,
tuning the filter can be a frustrating task for the most

experienced tuner. The situation is worse for an

engineering model, which may require significant
modification of couplings. A simple tuning procedure

is described in this paper that is suitable for both
development and production tuning. Applied to a 12-

rescnator combline filter, the procedure has resulted
in a reduction of tuning time for an engineering model
from several weeks to several days.

Procedure

The procedure begins with the symmetric two-
resonator system consisting of resonators 1 and n,

the coupling Kl, n and the coupled terminations.

This system cm stitutes an undercoupled filter
whose theoretical loss response is calculated. In
the actual filter with the other resonators decoupled,
the two- resonator system is tuned to duplicate the
theoretical response. Next a symmetric four-
resonator system is formed by adding resonators
2 and n-1 and associated couplings, and is tuned to

match the theoretical response. The procedure is
repeated until all n resonators are in the circuit.
At that point the filter will be ready for the final

tuning stage in which fine adjustments are made to

the return loss, delay and rejection responses.

For production tuning this procedure can be
used for the initial coarse tuning stage. For filter
development, this procedure would follow the
theoretical or empirical determination of the required
couplings. In some instances however the procedure
itself may be the easiest method to determine the

couplings, particularly for very small “bridge”
couplings such as

~, n’ ‘2, n-l, etc. in Figure I.

Because several theoretical responses are
required for this tuning procedure, an efficient and

accurate analysis method is desirable. The following
method can be used to directly calculate the network
response parameters, including loss slope and delay.

Analysis

As in synthesis El] , the analysis of a symmetric
coupled- resonator filter (or one of its subnetworks)
is most easily accomplished using bisection to cbtain

the singly- terminated even- and odd- mode networks.
Let S+ be the reflection coefficient for the even (+)

or od~ (- ) mode. The two- port scattering parameters
for the symmetric network are then:

’11 = ’22
= (s++ s-) /2 (la)

s
12=(s+- ‘-)/2

(lb )

Let Z+ be the input impedance to the even/odd- mode

networ-k, including the termination shunting node 1.
Then S+ = 2GZ+ -1, and from (1)

S1l=G(Z++Z )-1 (2a)

’12
=G(z+ -z) (2b)

For the canonical form of Figure 1, the analysis

is further simplified because the even/odd- mode

networks have no “bridge” couplings. Hence the
nodal admittance matrix Y’+ is a tridiagonal matrix,

and methods used to analyz-e ladder networks [2,3]

can be adapted to this situation. For a tridiagonal
matrix ~ of order m, whose eleme nts are Y. ., the

IJ
following sequence is calculated in descending order:

D =0
m +2 (3a)

D =1
m +1 (3b)

Di=Yii Di+l-Y~i+1Di+2, m i 1 (3C)
,

The desired element of Z = Y
-li5

.+ -

’11
= D2/D1 (4)

For the network of Figure 1, the non- zero elements Of

~+ are Yll = G + s + gfjl$n, Y12 = jK12, Y22 = s +

gijK2, n_1~ etc. (A small conductance term, g,

accounts for the resonator unloaded Q. ) Using these

elements in the sequence (3), equation (4) gives the
impedances Z+ needed to calculate S

11 and ’12 ‘n (2 ‘“

The loss slope and delay are the real and imaginary
parts, respectively, of d/d@(-in S12) from equation

(2 b). Thus by taking the derivatives of the sequence

(3) and equation (4), the loss slope and delay can be
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calculated directly. The sensitivity of the response

to any network parameter is also available with this
method.

Example

The tuning procedure was applied to a 12-resonator

combline filter at 4 Gi3z as shown in Figure 2. The

Iowpass prototype response of this filter has two
pairs of s topband 10Ss poles, one complex- frequency

loss-pole quad, and a pair of loss poles on the real
s- plane axis. Loss responses of symmetric sub-

networks with two through ten resonators were cal-

culated for tuning purposes, examples of which are

shown in Figures 3 and 4. The theoretical and

measured response of the filter (Figures 5 and 6)

show reasonable correspondence. Based on this and

subsequent filter development, the tuning procedure

n- 1 n/2+1

Y;Y 4’

4

I-h
n/2

Figure 1. Lowpass prototype.
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Figure 3. Loss response for 2 and 4 resonators.
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Figure 5. Loss response of filter.

has proven to be a valuable resource at the

laboratory bench.
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Figure 2. C ombline filter.
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Figure 4. Loss response for 8 resonators.
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Figure 6. Delay response of filter.
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